Model Linking

17. November 2021, online
General Approach

Approach

- Link sectoral macroeconomic model & partial model of energy sector
- Following Pan & Köhler 2007 and Köhler 2006
 - Endogenous learning curves → change IO coefficients
 - Hybrid model (economic and energy technology)
 - Relative production costs as trigger for investment
 - Capital stock structure → energy production mix
 - Focus on technology switch “tipping points”

Extensions in START2030

- **Economic**: all economic feedback mechanisms
 - Endogenous final demand & investment
 - Price system of all 77 commodities & Supply/Use Tables
 - Labor market feedback
 - Explicit electricity commodity (NACE 35.1)
 - Different household groups & prosumer

- **Electricity** generation: Detailed bottom-up model
 - Regional aspect (nodes) of AT
 - Detailed costs; varying demand load; electricity market; learning curves
 - Explicit depiction of AT physical electricity generation & demand
 - Technology specific investments + Infrastructure and storage
Soft-Link – iterative data exchange

ATLANTIS → DYNK
- Electricity generation by technology (GWh)

Electricity Generation costs (per GWh)

Market price (Whole sale) (€/MW)

Employment in electricity sector

Investment needs

DYNK → ATLANTIS
- Final electricity demand

Data exchange until convergence is achieved
Soft-Link – iterative data exchange

ATLANTIS → DYNK

Electricity generation by technology (GWh)
- Biomass, Coal, Gas, Hydro, Oil, Pump storage,
- Solar, Hydro storage, Wind, Battery

Electricity Generation costs (per GWh)
- Fuel; Personal; O&M; Depreciation; Interest rates; Emission certificates

Market price (Whole sale) (€/kWh)
- Short term costs

Employment in electricity sector (VZÄ/MW)
- Per capacity installed

Investment needs (€/MW)
- Plants, storage and grid

DYNK → ATLANTIS

Final electricity demand
- Per sector & private households

Database and scenario definitions
- Power plants, grid, load profile ...
- Fuel prices, ...

System adequacy
- For annual peak load (if necessary: adding power plants)

Energy balance, dispatch, electricity exchange
- For the peak- and offpeak-period of each month

Load flow and redispatch
- For the peak- and offpeak-period of each month

Financial accounting and CO₂ emissions
- Annually for each company

Analysis of results
- Graphical presentations for each company and each market

ATLANTIS

Analysis of results
- Focusing on socio economic impact on households

Change in final energy demand
- Change in final electricity demand

Macroeconomic modelling
- of economic effects
- sectoral emission effects
- distribution effects

Input information
- Change in electricity prices, investment needs, technologies

DYNK

Change in final energy demand
- Year +1

Database and scenario definitions
- IO tables, HBS, ... | Fuel prices, efficiency, ...

Year +1

Analysis of results
- Focusing on socio economic impact on households

Database and scenario definitions
- Power plants, grid, load profile ...
- Fuel prices, ...

System adequacy
- For annual peak load (if necessary: adding power plants)

Energy balance, dispatch, electricity exchange
- For the peak- and offpeak-period of each month

Load flow and redispatch
- For the peak- and offpeak-period of each month

Financial accounting and CO₂ emissions
- Annually for each company

Analysis of results
- Graphical presentations for each company and each market

DYNK

Change in final energy demand
- Year +1

Database and scenario definitions
- IO tables, HBS, ... | Fuel prices, efficiency, ...

Year +1
Soft-Link – iterative data exchange

ATLANTIS → DYNK
- Electricity generation by technology (GWh)
 - Biomass, Coal, Gas, Hydro, Oil, Pump storage, Solar, Hydro storage, Wind, Battery
- Electricity Generation costs (per GWh)
 - Fuel; Personal; O&M; Depreciation; Interest rates; Emission certificates
- Market price (Whole sale) (€/kWh)
 - Short term costs & grid costs
- Employment in electricity sector (VZÄ/MW)
 - Per capacity installed
- Investment needs (€/MW)
 - Plants, storage and grid

DYNK → ATLANTIS
- Final electricity demand
 - Per sector & private households

Inputs used to change ...

- **IO Coefficients** "techswitch"
- **Electricity Commodity price**
- **Employment intensity**
- **Investment demand**
- **Regional & temporal distributed electricity demand**

Figure: Illustrative IO-Tables
START2030

Data Processing

- **Soft-Link** – iterative data exchange

- **ATLANTIS → DYNK**
 - Electricity generation by technology (GWh)
 - Biomass, Coal, Gas, Hydro, Oil, Pump storage, Solar, Hydro storage, Wind, Battery
 - Electricity Generation costs (per GWh)
 - Fuel; Personal; O&M; Depreciation; Interest rates; Emission certificates
 - Market price (Whole sale) (€/kWh)
 - Short term costs & grid costs
 - Employment in electricity sector (VZÄ/MW)
 - Per capacity installed
 - Investment needs (€/MW)
 - Plants, storage and grid

- **DYNK → ATLANTIS**
 - Final electricity demand
 - Per sector & private households

Inputs used to change ...

IO Coefficients "techswitch"

Electricity
Commodity price

Employment intensity

Investment demand

Regional & temporal distributed electricity demand
"Techswitch": Aim: Change in IO coefficients based on electricity generation mix

- Available Data:
 - Technology specific IO-coefficients, based on Exiobase MRIO
 - Calibrated to AT-IOT 2017

- Step 1: Derive change in technology costs (by ATLANTIS results)
 - i.e. change in fuel costs, O&M etc. & change in output

- Step 2: Re-weighting of technology vectors
 - Electricity distribution & trade is constant

- Step 3: Aggregation of vectors to "new" NACE 35.1 sector input coefficients

- Step 4: Adapt coefficients in IO matrix & re-run DYNK

Figure: Illustrative Sub-Sector aggregation
Soft-Link – iterative data exchange

ATLANTIS → DYNK
- Electricity generation by technology (GWh)
 - Biomass, Coal, Gas, Hydro, Oil, Pump storage, Solar, Hydro storage, Wind, Battery
- Electricity Generation costs (per GWh)
 - Fuel; Personal; O&M; Depreciation; Interest rates; Emission certificates
- Market price (Whole sale) (€/kWh)
 - Short term costs
- Employment in electricity sector (VZÄ/MW)
 - Per capacity installed
- Investment needs (€/MW)
 - Plants, storage and grid

DYNK → ATLANTIS
- Final electricity demand
 - Per sector & private households

Inputs used to change...

- IO Coefficients
 - "techswitch"
- Employment intensity
- Investment demand
- Regional & temporal distributed electricity demand
"Price for Electricity", AIM: Extract consumer price of electricity

- Available data (ATLANTIS)
 - Generation costs per technology (Mio.€) – including emission certificate costs
 - Grid costs (€/kWh)

- **Step 1**: derive long-term generation costs
 - Total costs per GWh & Technology produced
 - Includes **capital** costs (depreciation, interest rates) and **labour** costs

- **Step 2**: Add fixed profit mark-up and grid costs
 - Based on historic shares (%)
 - Grid costs (€/kWh)

- **Step 3**: Add taxes & fees Derive price index

- **Step 4**: Derive price index
 - Starting year 2017 = 1
Soft-Link – iterative data exchange

ATLANTIS → DYNK
- **Electricity generation by technology (GWh)**
 - Biomass, Coal, Gas, Hydro, Oil, Pump storage,
 - Solar, Hydro storage, Wind, Battery
- **Electricity Generation costs (per GWh)**
 - Fuel; Personal; O&M; Depreciation; Interest rates; Emission certificates
- **Market price (Whole sale) (€/kWh)**
 - Short term costs
- **Employment in electricity sector (VZÄ/MW)**
 - Per capacity installed
- **Investment needs (€/MW)**
 - Plants, storage and grid

DYNK → ATLANTIS
- **Final electricity demand**
 - Per sector & private households

Inputs used to change ...
- IO Coefficients
 - "techswitch"
- **Electricity Commodity price**
- **Employment intensity**
- **Investment demand**
- Regional & temporal distributed **electricity demand**
"Demand for electricity": Aim: Link Electricity demand (physical) to IOT

Available data
- Sectoral electricity consumption (monetary & physical)

Step 1: Extract nominal electricity commodity (CPA 35.1) consumption \((D) \)
- from simulated IOT, current prices
- Industries & private households

Step 2: Deflate monetary values
- By Price index for commodity CPA35.1 \((P) \)

Step 3: Derive physical electricity demand \((X) \)
- By Energy intensity factor \((Z) \)
- where: Energy intensity factor is extrapolated from historic developments

\[
X_{elec} = \frac{D_{35.1}}{P_{35.1}} Z
\]

Stylized representation of physical electricity demand derivation
Are essential feedbacks missing?

Are our assumptions to derive electricity demand plausible? Are there other drivers?

Are electricity generation technologies represented sufficiently?
 - Costs: O&M, fuel, emission certificates, capital costs

Do you have any experience with linking B-U & T-D models?
 - Obstacles, good practice, advise